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Abstract

The longitudinal and transverse impedances of the bellows corrugations
are analyzed systematically. Formulae are given so that, in the study of in-
stabilities and energy losses, the impedances can be computed without resort
to running a time consuming code like TBCI. The effect of many corrugations
versus one corrugation is discussed.



1

I. INTRODUCTION

Bellows form an indispensable part of the vacuum chamber in a storage ring.

Their corrugations contribute significantly to the longitudinal and transverse cou-

pling impedances which will lead to various types of instabilities as well as parasitic

heating of the beam pipe. Although these impedances can be obtained by computing

the wake potentials using the code[1] TBCI and then taking the Fourier transforms,

the results are sometimes difficult to understand. The picture is usually further

complicated by computation error due to the limitation of the finite mesh size and

the truncation of the wake potential. It would be nice, if the coupling impedances

can be estimated by formulae so that the instabilities can be discussed without the

actual solving the Maxwell’s equations numerically.

There are essentially two types of bellows systems: inner bellows and outer

bellows. The outer bellows system is used, for example, in the Fermilab Main Ring.

It consists of a pill-box cavity with a radius of roughly two times the beam pipe

radius and some bellows corrugations. In the Fermilab Main Ring, the length of

this cavity is about 15 cm and there are only about four to five bellows corrugations

occupying about a tenth of the length. For this type of bellows system, the fields

resonating in the pill-box cavity will dominate the fields in the corrugations. As

a result, for impedance estimation, we can neglect the corrugations and study the

cavity only. Below cutoff frequency, the impedances can be estimated by closing

the cavity as if there were no beam pipes on both sides. Such a problem can then

be solved exactly. The results are some sharp resonances. Above cutoff, fields leak

away giving negligible contribution to the impedances. In many situations, these

sharp resonances can be avoided by shielding the pill-box cavity by sliding shields

at a radius approximately equal to the beam pipe radius. Such a bellows will then

appear the beam particles as one or two very shallow pill boxes. The contributions

to the impedances are then merely the small steps which are formula computable.

The inner bellows system consists of just corrugations of radius equal to that

of the beam pipe. Therefore, the corrugations become the only contribution to

the impedances. At low frequencies, the longitudinal and transverse impedances

resemble the contribution of a step. At higher frequencies, a broad resonance is

usually seen above cutoff. Such an impedance picture is more difficult to understand,

and this paper will be devoted mainly to the discussion of the inner bellows.

If the picture of a broad resonance is assumed, the longitudinal coupling impe-

dance can be characterized by three parameters: the resonant angular frequency
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ωr, the shunt impedance R‖ and the quality factor Q; i.e.,

Z‖(ω) =
R‖

1− jQ
(
ωr
ω
− ω

ωr

) . (1.1)

Such an expression satisfies Z‖(ω) = Z∗‖(−ω) and is therefore a valid description of

the longitudinal impedance. The transverse impedance, on the other hand, can be

characterized by three similar parameters: the resonant angular frequency ωr, the

shunt impedance R⊥ and the quality factor Q; i.e.,

Z⊥(ω) =
ω

ωr

R⊥

1− jQ
(
ωr
ω
− ω

ωr

) , (1.2)

which is also a valid description of the transverse impedance because it satisfies

Z⊥(ω) = −Z∗⊥(−ω) as well as ∫ ∞
−∞

Z⊥(ω)dω = 0. (1.3)

As we shall see, both the position of resonance and R‖/Q (or R⊥/Q) can be com-

puted without TBCI. A rough estimate of Q can also be made.

In Section II, we shall study the impedance of a single corrugation hoping to get

some insight into the general shape of the impedance. The position of the broad

resonance ωr is then determined by solving an equation. An empirical formula is also

given. In Section III, the low frequency behaviors of the impedances are discussed

and the formulae for their computation are given. These quantities determine single-

bunch mode-coupling instability growth rates and coupled-bunch instability growth

rates. Then, the ratio of shunt impedance to quality factor can be inferred for both

impedances. In Section IV, the loss factors are derived. In Section V, the effects of

many corrugations versus one are discussed.

II. ONE CORRUGATION

Let us begin by examining one rectangular corrugation of the bellows. Let b be

the radius of the beam pipe, ∆ and 2g be the depth and width of the corrugation

respectively. Henke[2] has studied the problem in the frequency domain, which

involves the solution of an infinite matrix equation. This complicated equation can

be simplified tremendously[3] when g/b � 1. For clarity, only the result is quoted.

The details can be obtained by following the derivation of Henke but retaining only
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one term in the expansion inside the corrugation. The longitudinal impedance of

such a rectangular corrugation as a function of frequency ω/2π is

Z‖(ω) =
gZ0

πbI2
0(b̄)D

, (2.1)

where

D = j
R′0(kb)

R0(kb)
− 2kj

 S∑
s=1

1

β2
s

(
1− e−jβsg sinβsg

βsg

)
−

∞∑
s=S+1

1

α2
s

(
1− e−αsg sinhαsg

αsg

) .
(2.2)

In the above, k = ω/c, Z0 = 377 Ω, I0 is the modified Bessel function of order zero,

b̄ = bk/γβ, γ and β are the relativistic velocity parameters of the beam particles.

In the summations, βs =
√

(k2b2−j2
os) and αs =

√
(j2

0s−k2b2), where j0s is the s-th

zero of the Bessel function J0 and j0S is the zero that is just larger or equal to kb.

Also, R(kb) = J0(kb)N0(kd) − J0(kd)N0(kb), where d = b + ∆ and J0 and N0 are,

respectively, the Bessel function and Neumann function of order zero. To have a

deeper insight, let us take the limit kb � 1 and g/b → 0, then, by expanding the

sine, sinh and the exponentials, D can be simplified to

D = −j cot k∆ + 2kg

 S∑
s=1

1√
k2b2 − j2

0s

+
∞∑

s=S+1

j√
j2

0s − k2b2

 . (2.3)

Here, in reality, the second summation cannot go to infinity because the expansion

will break down as soon as αsg ' 1.

The zeroes of ImD in Eq. (2.2) determines the peaks of resonances. If the

summations are neglected, from Eq. (2.3), they occur at k∆ = π/2, 3π/2, etc.,

which just correspond to resonances inside the corrugation or when the depth ∆

is an odd number of the quarter wavelength. This term contributes very sharp

resonances. Usually only the first one will be visible to the beam because the

higher resonances are at very high frequencies. Take the case of a corrugation

depth of ∆ = 5 mm, cot k∆ gives resonances at 15, 45, 75, . . . GHz. The first

summation in D represents all the above-cutoff modes of waves that can propagate

along the beam pipe so that the sharp resonances will be damped heavily. The

second summation, which is imaginary, represents all the below-cutoff modes that

attenuate along the beam pipe. Its effect can be thought of as fields clinging to the

opening of the corrugation, thus making the corrugation depth ∆ effectively longer

and the resonance frequencies smaller. In fact, this is borne out mathematically,

since this second summation is positive aside from the factor j, while cot k∆ is

positive for k∆ smaller than π/2.
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Figure 1 shows the plot of the impedance Z‖ due to a corrugation of depth

∆/b = 0.1 and half width g/b = 0.025. We see a broad resonance with the resonant

frequency shifted from kb = πb/∆ = 15.7 to ∼ 13. This shift is not small at all

and is a contribution of all the non-propagating modes. We also see notches located

exactly at kb = j0s, the zeroes of J0 or the cutoff frequencies of the pipe. These

notches are evident from Eq. (2.1), because when kb approaches j0S only one term in

the summation will contribute. Physically, since 2g � λ, the wavelength, only the

z-independent mode is favored in the region of the corrugation. At one of the cutoff

frequencies, the mode that is just allowed is z-independent and is therefore favored

and dominates over all others. This mode will not penetrate into the corrugation

at all and, as a result, the beam does not see the corrugation. We can also say

that since this mode is just allowed it has a phase velocity that is infinite and

will not interact with the particle beam which has a finite velocity; therefore the

coupling impedance Z‖ vanishes. The plot also shows some sharp resonances just

before the cutoff dips at frequencies below the broad resonance peak. According to

Henke, they belong to some well-trapped modes in the region of the cross section

enlargement. To us, the physical existence of such trapped modes is not clear at all,

because it is hard to see how such small corrugation can trap fields above cutoff.

But, mathematically it is clear. The admittance which is proportional to D has an

imaginary part going to infinity at the zeroes of J0. For frequencies below the first

broad band, as it goes to infinity, it crosses the zero value twice, and, as a result,

produces a sharp resonance there. For frequencies above the first broad band and

far below the second, the imaginary part of the admittance is always positive; thus

no sharp resonances are seen.

For a bellows with many corrugations, the total impedance is not just the sum

of the impedances of the individual corrugations. This is because the corrugations

are so close together that they interact with each other. However, the situation is

not too bad. We expect the notches tend to smooth out because the z-independent

mode is no longer favored. But the overall broad band remains. However, there

are other field structures, too; they are mainly due to fields clinging across several

corrugations. As a result, the effective depth of the corrugation will be further

lengthened and therefore the frequency of the broad band resonance further reduced.

It is a good approximation to assume that the position of the broad band and its

Q-value are not altered much; they can therefore be estimated using Eq. (2.2) and

possibly Eq. (2.3). The position and quality factor of the broad band krb are then

given approximately by

ImD(krb) = 0, (2.4)
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Figure 1: Real and imaginary parts of the longitudinal impedance of one corrugation

of a bellows with half width g/b = 0.025 and depth ∆/b = 0.1 .
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Q ∼ kb

2ReD
dImD

d(kb)

∣∣∣∣∣
kb=krb

. (2.5)

The solution of the first equation can only be found numerically. For the examples

studied below, the computation of Q with Eq. (2.5) gives values varying from 3

to 8. We should not expect this formula to be accurate at all due to the notches

and sharp peaks that exhibit in the broad band. If one can obtain an simple

expression from Eq. (2.1) with the notches and sharp peaks removed, it will serve

as an excellent derivation of position, Q and shunt impedance of the broad band.

On the other hand, the extraction of Q from a TBCI calculation is hardly possible

due to truncation of the wake field and noises arising from the finite mesh size.

However, for the cases discussed here, the Q’s do fall between 3 and 8. But this

does not imply agreement with Eq. (2.5) in each case. As a whole, it is not a bad

idea to assume a rough value of Q ∼ 5.

For a bellows consisting of many corrugations, the standard procedure is to

compute the wake function using the code[1] TBCI and obtain the impedance via a

Fourier transform[4], [5]. The code TBCI solves the Maxwell’s equations in the time

domain and calculate the wake function Ŵ (t) of a bunch of unit charge and RMS

length σ`,
Ŵ (t) =

∫
dτq(τ )W (t− τ ), (2.6)

where W is the wake potential due to a point source and q(τ ) the charge distribution

of the bunch, which is usually taken as a Gaussian truncated at ±5σ`. The Fourier

transformation of Eq. (2.6) gives Ẑ(ω), the effective impedance seen by the bunch,

and is related to the actual impedance seen by a point charge Z(ω) by

Ẑ(ω) = Z(ω)e−
1
2

(ωσ`/c)
2

. (2.7)

Knowing Ẑ(ω), the correct Z(ω) can be found.

Inner bellows of various sizes are examined. The results are shown in Table 1.

The TBCI values are computed with 5 corrugations while the Henke values are for

one corrugation using the Eq. (2.4). We see that in each case, the TBCI value

is lower. This agrees with our speculation that fields can cling across several cor-

rugations and thus lower resonant frequency. With the exception of Case 11, the

agreement is roughly 10%. Case 11 has a corrugation depth of only 0.25 cm, the

most shallow among the others. Therefore, the resonant frequency will be very sen-

sitive to the lengthening of the depth by the fields clinging to the opening. Thus,

the resonant frequency for five corrugations can differ very much from that of one.

Comparing Cases 8, 14 and 15, we learn that the change in resonant frequency fr
depends very weakly on the corrugation gap g. A 100% increase in g lowers fr by
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Case No. b ∆ 2g fr in GHz

cm cm cm Henke TBCI(‖) TBCI(⊥)

1 1.50 0.50 0.15 13.3 12.3 12.3

2 2.00 0.50 0.15 12.2 11.5 12.2

3 2.75 0.50 0.15 12.9 11.8 11.6

4 3.25 0.50 0.15 12.2 11.6 11.9

5 3.50 0.50 0.15 13.1 11.7 11.8

6 4.50 0.50 0.15 12.1 11.6 11.8

7 6.15 0.50 0.15 13.1 11.4 11.6

8 6.50 0.50 0.15 12.6 11.4 11.6

9 8.00 0.50 0.15 12.3 11.6 11.3

10 2.00 0.50 0.20 11.9 11.2 11.5

11 2.00 0.25 0.15 24.1 21.0 21.0

12 2.00 0.75 0.15 9.4 8.3 8.3

13 2.00 1.00 0.15 7.4 7.0 7.0

14 6.50 0.50 0.20 12.3 10.8 10.9

15 6.50 0.50 0.30 12.0 10.2 10.3

Table 1: Resonance frequencies of various bellows configurations.

only 9%. If this dependence on g is neglected, we can obtain a fitted relation shown

in Fig. 2,

krb = 1.37
(

∆

b

)−0.948

, (2.8)

where kr = 2πfr/c. The fit is a very good one except for Cases 11 and 13. The

former may be a result of the shallowness of the corrugation. The latter is the

one with ∆/b = 0.5 which is the biggest of all cases. Thus, we may conclude that

Eq. (2.8) gives the correct resonant frequency for ∆/b < 0.5 and corrugation depth

∆ > 0.25 cm. Similar fit has also been given in Ref. 4 for Z⊥ using TRANSVRS

but the results differ from ours. This empirical formula can also be written as

kr∆ = 1.37
(

∆

b

)0.052

. (2.9)

Since the exponent is small, Eq. (2.9) just says that the fields due to the cutoff

modes lower kr∆ from π/2 = 1.57 to 1.37.

The transverse impedance of an inner bellows also shows a broad resonance at

about roughly the same frequency as the longitudinal impedance. This can easily

be understood by considering the bellows corrugation as a radial transmission line.
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Figure 2: A fit of the resonance position as a function of ∆/b.
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The resonant frequency is therefore roughly proportional to

c

[(
1

4∆

)2

+
(

1

2πb

)2
]1/2

. (2.10)

Since (2πb)2 � (4∆)2 in most cases, the resonant frequency is dominated by ∆

only. The resonant frequencies for the above examined cases computed by TBCI

are listed in the last column of Table 1. They are, as a whole, the same as those

of the longitudinal impedance and can therefore be estimated roughly by solving

Eq. (2.4) or read out by the empirical formula of Eq. (2.8) or Eq. (2.9).

III. LOW FREQUENCY BEHAVIORS

The low frequency behavior of the impedances can be obtained by examining

the low frequency magnetic field trapped in the corrugations. When a charged

particle passes through a corrugation, electromagnetic fields are left behind. The

high-frequency fields are composed of resonances and are usually heavily damped

if above cutoff. However, at low frequencies, only azimuthal magnetic field can

be trapped as depicted in Fig. 3(a), because the electric field cannot satisfy the

required boundary conditions inside the corrugation.

Consider a current of time behavior I(t) = I0ejωt. The magnetic flux trapped

inside a corrugation or cavity of length ` = 2g is

φt =
µ0I0`

2π
ln
b+ ∆

b
. (3.1)

Only the flux between b and b + ∆ has been included because the rest has been

taken care of as space-charge contribution. The back e.m.f. induced on the beam is∫
Ezdz = −jωφt. (3.2)

Therefore, the longitudinal impedance per harmonic seen by the beam at low fre-

quencies is[6]

Z‖
n

= j
Z0β`

2πR
ln
b+ ∆

b
, (3.3)

where Z0 = 377 Ω, R the ring radius, and βc the beam particle velocity.

For the dipole mode, we can make use of the space-charge contribution to the

transverse impedance,

(Z⊥)sp = −jZ0R

(
1

β2
− 1

)(
1

a2
− 1

b2

)
, (3.4)
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b

b

d

d

Figure 3: (a) At low frequencies, only azimuthal magnetic flux (dots) can be trapped

inside a cavity after the passage of a charged particle whose electric field lines are

shown as solid arrows. (b) When the cavity width is much bigger than the step,

only the magnetic flux near the corners can be trapped; the flux in the middle leaks

away.
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where a is the beam radius. In the first bracket, the first term 1/β2 represents

the contribution of the electric field while the 1 the contribution of the magnetic

field. In the second bracket, the second term 1/b2 is the force due to the image

on the beam pipe while the first term 1/a2 is force of the beam on itself. Thus,

the contribution of azimuthal magnetic field trapped inside the corrugation can be

obtained from Eq. (3.4) by taking only the magnetic part, replacing b by b+ ∆, and

subtracting away the usual space-charge contribution; or

Z⊥ = j
Z0`

2π

[
1

b2
− 1

(b+ ∆)2

]
. (3.5)

This can be written as

Z⊥ = j
Z0`

πb2

S2 − 1

2S2
, (3.6)

where S = (b + ∆)/b. A solution of the Maxwell’s equations in the frequency

domain[7] gives a result,

Z⊥ = j
Z0`

πb2

S2 − 1

S2 + 1
, (3.7)

when `/b� π2/32. The difference between the two formulae is not big if ∆/b� 1.

Also in this limit, we find Z⊥ ∝ ∆/b3 while Z‖ ∝ ∆/b.

We do not expect Eqs. (3.3) and (3.7) to hold when the length of the cavity is

much bigger than the steps or ` � 2∆, because only the magnetic flux near the

corners will be trapped and that in the middle will leak away as depicted in Fig. 3(b).

In that case, ` should be replaced by ∼ 2∆ in the formulae. Equations. (3.3) and

(3.7) can be checked readily by reading out ImZ‖/f and ImZ⊥ from the TBCI

impedance plots at zero frequency and divided by the number of corrugations. The

results are listed in Table 2. We see that the estimation of ImZ‖/f is excellent,

whereas the estimation of ImZ⊥ seems to be always a bit too high. However, the

results of TBCI should not trusted completely without reservation. In fact TBCI

is not sacred. It has been reported[4] that TBCI gives different results from the

codes[8], [9] TRANSVRS and KN7C. Also, for a simple pill-box cavity, a very long

transverse wake can lead to unphysical divergent results.

From the single-resonance expressions of impedances in Eqs. (1.1) and (1.2), we

get, at zero frequency,
ImZ‖
f

=
2πR‖
ωrQ

, (3.8)

and

ImZ⊥ =
R⊥
Q
. (3.9)



12

Case b ∆ 2g ImZ‖/f (Ω/GHz) ImZ⊥ (Ω/m)

cm cm cm Eq. (3.3) TBCI Eq. (3.7) TBCI

1 1.50 0.50 0.15 0.542 0.540 224 199

2 2.00 0.50 0.15 0.410 0.410 98.8 89.6

3 2.75 0.50 0.15 0.315 0.310 39.4 36.0

4 3.25 0.50 0.15 0.269 0.270 24.2 22.4

5 3.50 0.50 0.15 0.252 0.256 19.5 18.4

6 4.50 0.50 0.15 0.199 0.202 9.33 8.88

7 6.15 0.50 0.15 0.150 0.147 3.71 3.54

8 6.50 0.50 0.15 0.140 0.140 3.15 3.7

9 8.00 0.50 0.15 0.117 0.117 1.70 1.64

10 2.00 0.50 0.20 0.561 0.556 132 116

11 2.00 0.25 0.15 0.222 0.221 52.8 46.7

12 2.00 0.75 0.15 0.600 0.600 139 124

13 2.00 1.00 0.15 0.764 0.720 173 155

14 6.50 0.50 0.20 0.186 0.190 4.20 3.94

15 6.50 0.50 0.30 0.280 0.277 6.30 5.70

Table 2: ImZ‖/f and ImZ⊥ per corrugation at zero frequency.

Thus, R⊥/Q can be read off from Eq. (3.7) and R‖/Q can be computed using

Eq. (3.3) and the resonant frequency ωr determined in Section II.

IV. ENERGY LOSS

A bunch of longitudinal distribution ρ(z − ct) will lose energy at the rate of

dε

dt
=
c3

R

∫ ∞
−∞

dω|ρ̃(ω)|2Z‖(ω), (4.1)

where the bunch spectrum is given by

ρ̃(ω) =
1

2πc

∫ ∞
−∞

dzρ(z)ejωz/c, (4.2)

and the longitudinal impedance is averaged over 2πR, the circumference of the

storage ring. For a Gaussian bunch of RMS length σ`, the bunch spectrum is

ρ̃(ω) =
eN

2πc
e−ω

2σ2
`
/2c2, (4.3)
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where N is the number of particles in the bunch, each carrying charge e. The rate

of loss of energy can then be written as

dε

dt
= e2N2f0k‖. (4.4)

Here, f0 is the revolution frequency and

k‖ =
1

π

∫ ∞
0

dωe−(ωσ`/c)
2 ReZ‖(ω). (4.5)

This quantity is sometimes important especially for a superconducting ring.

The energy loss across the bellows is also computed in the TBCI run. However,

assuming the impedance expression for one resonance, it can be computed analyt-

ically. Substituting Eq. (1.1) into Eq. (4.5) and carrying out the integration, we

obtain, for one corrugation of the bellow[10],

k‖ =
R‖ωr
2Qα

(
1− 1

4Q2

)−1/2

Re[zw(z)]. (4.6)

In above,

α =
ωrσ`
c
, (4.7)

z =

(√
1− 1

4Q2
+

j

2Q

)
α, (4.8)

and w(z) is the complex error function.

Let us examine firstly the situation of a very short bunch and a very long bunch.

For a very short bunch, α→ 0, we have

w(z) = 1 +
2j√
π
z − z2 +O(z3). (4.9)

Thus,

k‖ =
R‖ωr
2Q

(
1− 2α√

πQ

)
. (4.10)

Note that the first term is nothing but the area under one resonance divided by π

just as expected from Eq. (4.6) by putting σ` = 0.

For the other extreme, when α→∞, we have

w(z) =
j√
πz

+
j

2
√
πz3

+O(z−5). (4.11)
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On substituting into Eq. (4.6), the O(z−1) term in w(z) does not contribute; the

next higher order term gives

k‖ =
R‖ωr

4
√
πQ2α3

. (4.12)

Thus, when the bunch is long or α� 1, the energy loss will be very small. This can

also be seen from Eq. (4.6); if the bunch is long enough the exponential factor will

drop to a very small value at the resonance of Z‖ giving negligible contribution. A

general shape of the energy loss k‖ versus α is displayed in Fig. 4.

Take for example the Superconducting Super Collider (SSC) where σ` = 7 cm.

If the corrugations have a depth of 0.5 cm, period 0.30 cm and are of an inner

bellows configuration having a beam pipe radius of 1.65 cm, the broad resonance is

at ∼ 12.3 GHz, according to Eq. (2.9). Using Eqs. (3.5) and (3.8), one gets R‖/Q =

6.14 Ω for each corrugation. The parameter α = ωrσ`/c = 18.0, so Eq. (4.12) can

be used. The energy loss is therefore k‖ = 1.14× 107/Q Ω/sec for one corrugation.

In the SSC, there are 1.2 km of bellows or 400,000 corrugations. There are 17,280

bunches each with 7.3×109 particles. The revolution frequency is 3.614 kHz. Thus,

Eq. (4.4) implies an energy loss of 389/Q watts. With a nominal quality factor of

Q ∼ 5, this amounts to an energy deposit on the beam pipe at the rate of 78 watts.

For the transverse coupling impedance, there is a similar loss factor defined as

k⊥ =
1

2πj

∫ ∞
−∞

dωZ⊥(ω)e−(ωσ`/c)
2

, (4.13)

where a Gaussian bunch has been assumed. Using Eq. (1.2), the integral can be

done in the closed form:

k⊥ =
R⊥ωr
2Q

(
1− 1

4Q2

)−1/2

Imw(z). (4.14)

For a very short bunch or α� 1, using Eq. (4.9), we get

k⊥ =
R⊥ωrα√
πQ

, (4.15)

which goes to zero when α → 0. This is expected because when the bunch length

is exactly zero, the exponential in Eq. (4.13) can be deleted and the transverse

impedance when integrated from −∞ to ∞ vanishes according to Eq. (1.3).

On the other hand, when α� 1, the expansion of Eq. (4.11) gives

k⊥ =
R⊥ωr

2
√
πQα

. (4.16)
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α = ωrσ`/c

Figure 4: Plot of k‖ versus α = ωrσ`/c.
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This agrees with the direct integration of Eq. (4.13) by letting Z⊥(ω) = Z⊥(0) and

taking it out of the integration sign.

In fact, when Q � 1, z is almost real and is equal to α. When Q �
√
πα/2,

Eq. (4.14) can be rewritten as

k⊥ =
R⊥ωr√
πQ

F (α). (4.17)

In above, F (α) is the Dawson’s integral defined as

F (α) = e−α
2
∫ α

0
et

2

dt, (4.18)

which has a maximum of 0.5410 at α = 0.9241. The general shape of k⊥ as a

function of α is plotted in Fig. 5.

Both k‖ and k⊥ are computed using Eqs. (4.6) and (4.14). The values of R‖/Q

and R⊥/Q are computed from Eqs. (3.3), (3.7), (3.8) and (3.9). The quality factor

is assumed to be Q = 5. The results are compared with those obtained from TBCI

and are tabulated in Table 3. The agreement is satisfactory.

Case b ∆ 2g k‖ k⊥
cm cm cm Eq. (4.6) TBCI Eq. (4.14) TBCI

1 1.50 0.50 0.15 0.782 0.700 44.6 45.4

2 2.00 0.50 0.15 0.591 0.534 19.9 18.4

3 2.75 0.50 0.15 0.454 0.390 7.86 7.06

4 3.25 0.50 0.15 0.388 0.332 4.87 4.30

5 3.50 0.50 0.15 0.363 0.312 3.92 3.46

6 4.50 0.50 0.15 0.287 0.244 1.86 1.66

7 6.15 0.50 0.15 0.216 0.178 0.73 0.66

8 6.50 0.50 0.15 0.201 0.169 0.62 0.56

9 8.00 0.50 0.15 0.168 0.139 0.33 0.30

10 2.00 0.50 0.20 0.805 0.696 25.6 23.4

11 2.00 0.25 0.15 0.177 0.164 13.1 11.5

12 2.00 0.75 0.15 0.707 0.650 18.8 11.5

13 2.00 1.00 0.15 0.745 0.666 18.4 19.5

14 6.50 0.50 0.20 0.263 0.220 0.78 0.70

15 6.50 0.50 0.30 0.386 0.308 1.10 0.95

Table 3: k‖ in 1011 Ω/sec and k⊥ in 1011 Ω/m/sec per corrugation. RMS bunch

length is 4 mm and Q = 5.
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α = ωrσ`/c

Figure 5: Plot of k⊥ versus α = ωrσ`/c.
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V. THE EFFECTS OF MANY CORRUGATIONS

We have examine the situation of having 1, 5, 20 and 40 corrugations, each of

depth ∆ = 0.5 cm, period 4g = 0.3 cm. The beam pipe radius is b = 2.0 cm and the

RMS bunch length is σ` = 4 mm. The TBCI results are listed in Table 4. We see

n fr‖ fr⊥ ImZ‖/f ImZ⊥ k‖ k⊥
GHz GHz Ω/GHz Ω/m 1011Ω/sec 1011Ω/m/sec

1 12.1 13.2 0.413 85.8 0.561 22.3

5 11.5 12.2 0.410 89.6 0.534 19.9

20 10.0 10.3 0.407 83.4 0.520 16.7

40 9.0 9.7 0.414 86.5 0.530 16.0

Table 4: The resonant frequencies, impedances at zero frequency and loss factors

for n = 1, 5, 20, 40 corrugations. All values shown are per corrugation. Each

corrugation has a depth of 5 mm and period 3 mm. The beam pipe radius is 2 cm

and the RMS bunch length 4 mm.

that resonant frequencies are lowered with more corrugations as we have anticipated.

The transverse loss factor k⊥ also decreases with more corrugations. However, it

is interesting to see that ImZ‖/f , ImZ⊥ and k‖ are almost independent of the

number of corrugations. These are in fact the quantities used in the study of single-

bunch and coupled-bunch instabilities as well as parasitic heating. In order words,

we can safely used the formulae developed in the previous sections to compute these

quantities per corrugation, multiply them by the number of corrugations in the ring,

and use the final results in the stability criteria and parasitic energy loss formula.
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